Pathophysiology --what's actually going on in the brain?

| categories: physiology, adhd

Contents

1 Theories

Most drugs used to treat hyperactivity have action at the dopamine transporter (DAT) and norepinephrine transporter (NET), indirectly increasing the concentration of synaptic and extrasynaptic catecholamines dopamine (DA) and norepinephrine (NE) [78]. Dysregulation of DA and NE circuits has been postulated as the major pathophysiology of attention-deficit/hyperactivity disorder (ADHD) [14]. Through neuromodulation of fronto–striatal–cerebellar circuits, both DA and NE have critical roles in prefrontal-dependent executive functions thought to underlie clinical symptoms of ADHD, and are a key target for pharmacological manipulation [5].

Most studies looking at DAT and DA receptor densities are restricted to the striatum because of the extremely high density there, and the use of radiotracers with low affinity. Very few studies measure receptor densities in prefrontal cortex, which is more often implicated in the deficits found in ADHD [2]. Berridge and Devilbiss [3] used microdialysis to demonstrate that low, and clinically relevant methylphenidate (MPH) doses preferentially increase extracellular catecholamines in the prefrontal cortex relative to subcortical regions.

As DAT is a major target for ADHD stimulant medications, and medication-naïve ADHD subjects have reduced levels of DAT, DA D2 and D3 receptor availability in subcortical regions (including nucleus accumbens (NAcc), caudate nucleus, and midbrain) [911], whereas ADHD patients who had previous medication history showed an increased DAT density [6], it seems long-term treatment with MPH causes long-term changes in DAT and DA receptor expression. Possible alterations to endogenous DA levels in ADHD are likely to trigger complex pre- and post-synaptic compensatory changes to restore balance in the system, which may include changes in DA synthesis, release, receptor sensitivity, and neuronal responsiveness [5]. In order to better understand the DA dysfunction underlying ADHD, abnormal markers of DA signaling need to be understood in the presence of powerful counteracting regulatory influences.

ADHD
attention-deficit/hyperactivity disorder
DAT
dopamine transporter
DA
dopamine
MPH
methylphenidate
NAcc
nucleus accumbens
NET
norepinephrine transporter
NE
norepinephrine

References

[1]    A. F. T. Arnsten. Fundamentals of attention-deficit/hyperactivity disorder: circuits and pathways. J Clin Psychiatry, 67 Suppl 8:7–12, 2006.

[2]    A. F. T. Arnsten and B.-M. Li. Neurobiology of executive functions: catecholamine influences on prefrontal cortical functions. Biol Psychiatry, 57(11):1377–84, Jun 2005. doi: 10.1016/j.biopsych.2004.08.019.

[3]    C. W. Berridge and D. M. Devilbiss. Psychostimulants as cognitive enhancers: the prefrontal cortex, catecholamines, and attention-deficit/hyperactivity disorder. Biol Psychiatry, 69(12):e101–11, Jun 2011. doi: 10.1016/j.biopsych.2010.06.023.

[4]    J. Biederman. Attention-deficit/hyperactivity disorder: a selective overview. Biol Psychiatry, 57(11):1215–20, Jun 2005. doi: 10.1016/j. biopsych.2004.10.020.

[5]    N. Del Campo, S. R. Chamberlain, B. J. Sahakian, and T. W. Robbins. The roles of dopamine and noradrenaline in the pathophysiology and treatment of attention-deficit/hyperactivity disorder. Biol Psychiatry, 69(12):e145–57, Jun 2011. doi: 10.1016/j.biopsych.2011.02.036.

[6]    T. J. Spencer, J. Biederman, B. K. Madras, S. V. Faraone, D. D. Dougherty, A. A. Bonab, and A. J. Fischman. In vivo neuroreceptor imaging in attention-deficit/hyperactivity disorder: a focus on the dopamine transporter. Biol Psychiatry, 57(11):1293–300, Jun 2005. doi: 10.1016/j.biopsych.2005.03.036.

[7]    N. D. Volkow, G. Wang, J. S. Fowler, J. Logan, M. Gerasimov, L. Maynard, Y. Ding, S. J. Gatley, A. Gifford, and D. Franceschi. Therapeutic doses of oral methylphenidate significantly increase extracellular dopamine in the human brain. J Neurosci, 21(2): RC121, Jan 2001.

[8]    N. D. Volkow, G.-J. Wang, J. S. Fowler, J. Logan, D. Franceschi, L. Maynard, Y.-S. Ding, S. J. Gatley, A. Gifford, W. Zhu, and J. M. Swanson. Relationship between blockade of dopamine transporters by oral methylphenidate and the increases in extracellular dopamine: therapeutic implications. Synapse, 43(3):181–7, Mar 2002. doi: 10.1002/syn.10038.

[9]    N. D. Volkow, G.-J. Wang, J. Newcorn, J. S. Fowler, F. Telang, M. V. Solanto, J. Logan, C. Wong, Y. Ma, J. M. Swanson, K. Schulz, and K. Pradhan. Brain dopamine transporter levels in treatment and drug naïve adults with adhd. Neuroimage, 34(3):1182–90, Feb 2007. doi: 10.1016/j.neuroimage.2006.10.014.

[10]    N. D. Volkow, G.-J. Wang, J. Newcorn, F. Telang, M. V. Solanto, J. S. Fowler, J. Logan, Y. Ma, K. Schulz, K. Pradhan, C. Wong, and J. M. Swanson. Depressed dopamine activity in caudate and preliminary evidence of limbic involvement in adults with attention-deficit/hyperactivity disorder. Arch Gen Psychiatry, 64(8): 932–40, Aug 2007. doi: 10.1001/archpsyc.64.8.932.

[11]    N. D. Volkow, J. S. Fowler, G. J. Wang, R. Baler, and F. Telang. Imaging dopamine’s role in drug abuse and addiction. Neuropharmacology, 56 Suppl 1:3–8, 2009. doi: 10.1016/j.neuropharm.2008.05.022.